Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 2764, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553466

RESUMO

The existing Intraductal Papillary Mucinous Neoplasm (IPMN) risk stratification relies on clinical and histological factors, resulting in inaccuracies and leading to suboptimal treatment. This is due to the lack of appropriate molecular markers that can guide patients toward the best therapeutic options. Here, we assess and confirm subtype-specific markers for IPMN across two independent cohorts of patients using two Spatial Transcriptomics (ST) technologies. Specifically, we identify HOXB3 and ZNF117 as markers for Low-Grade Dysplasia, SPDEF and gastric neck cell markers in borderline cases, and NKX6-2 and gastric isthmus cell markers in High-Grade-Dysplasia Gastric IPMN, highlighting the role of TNFα and MYC activation in IPMN progression and the role of NKX6-2 in the specific Gastric IPMN progression. In conclusion, our work provides a step forward in understanding the gene expression landscapes of IPMN and the critical transcriptional networks related to PDAC progression.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Intraductais Pancreáticas/genética , Adenocarcinoma Mucinoso/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Hiperplasia , Proteínas de Homeodomínio/genética
2.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339243

RESUMO

In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.

3.
J Transl Med ; 21(1): 843, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996891

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. This is due to its aggressive course, late diagnosis and its intrinsic drugs resistance. The complexity of the tumor, in terms of cell components and heterogeneity, has led to the approval of few therapies with limited efficacy. The study of the early stages of carcinogenesis provides the opportunity for the identification of actionable pathways that underpin therapeutic resistance. METHODS: We analyzed 43 Intraductal papillary mucinous neoplasms (IPMN) (12 Low-grade and 31 High-grade) by Spatial Transcriptomics. Mouse and human pancreatic cancer organoids and T cells interaction platforms were established to test the role of mucins expression on T cells activity. Syngeneic mouse model of PDAC was used to explore the impact of mucins downregulation on standard therapy efficacy. RESULTS: Spatial transcriptomics showed that mucin O-glycosylation pathway is increased in the progression from low-grade to high-grade IPMN. We identified GCNT3, a master regulator of mucins expression, as an actionable target of this pathway by talniflumate. We showed that talniflumate impaired mucins expression increasing T cell activation and recognition using both mouse and human organoid interaction platforms. In vivo experiments showed that talniflumate was able to increase the efficacy of the chemotherapy by boosting immune infiltration. CONCLUSIONS: Finally, we demonstrated that combination of talniflumate, an anti-inflammatory drug, with chemotherapy effectively improves anti-tumor effect in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Mucinas , Gencitabina , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas
4.
J Enzyme Inhib Med Chem ; 38(1): 2274798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905438

RESUMO

Type 2 diabetes (T2D) is a progressive metabolic disorder of glucose metabolism. One of the therapeutic approaches for the treatment of T2D is reducing postprandial hyperglycaemia through inhibition of the digestive enzymes α-glucosidase and α-amylase. In this context, aimed at identifying natural products endowed with anti-T2D potential, we focused on Ptilostemon casabonae (L.) Greuter, a species belonging to Asteraceae family. Enzymatic inhibition, antioxidant activity, phenolic composition and cellular assays were performed. This study revealed that the P. casabonae hydroalcoholic extract exerts a potent inhibitory activity against α-glucosidase. This activity is supported by an antioxidant effect, preventing ROS formation in a stressed cellular system. HPLC-PDA-MS/MS analysis, revealed a complex polyphenolic fraction. Among the tested pure compounds, 1,5-dicaffeoylquinic acid, apigenin and rutin displayed good α-glucosidase inhibitory activity. Our study suggested new potential of P. casabonae encouraging us to further testing the possible therapeutic potential of this extract.


Assuntos
Asteraceae , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , alfa-Amilases/metabolismo
5.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298264

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest cancers in oncology because of its increasing incidence and poor survival rate. More than 90% of PDAC patients are KRAS mutated (KRASmu), with KRASG12D and KRASG12V being the most common mutations. Despite this critical role, its characteristics have made direct targeting of the RAS protein extremely difficult. KRAS regulates development, cell growth, epigenetically dysregulated differentiation, and survival in PDAC through activation of key downstream pathways, such as MAPK-ERK and PI3K-AKT-mammalian target of rapamycin (mTOR) signaling, in a KRAS-dependent manner. KRASmu induces the occurrence of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) and leads to an immunosuppressive tumor microenvironment (TME). In this context, the oncogenic mutation of KRAS induces an epigenetic program that leads to the initiation of PDAC. Several studies have identified multiple direct and indirect inhibitors of KRAS signaling. Therefore, KRAS dependency is so essential in KRASmu PDAC that cancer cells have secured several compensatory escape mechanisms to counteract the efficacy of KRAS inhibitors, such as activation of MEK/ERK signaling or YAP1 upregulation. This review will provide insights into KRAS dependency in PDAC and analyze recent data on inhibitors of KRAS signaling, focusing on how cancer cells establish compensatory escape mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Cancer Genet ; 272-273: 16-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36641997

RESUMO

13q14 deletion is the most recurrent chromosomal aberration reported in B-CLL, having a favorable prognostic significance when occurring as the sole cytogenetic alteration. However, its clinical outcome is also related to the deletion size and number of cells with the del(13)(q14) deletion. In 10% of cases, 13q14 deletion arises following a translocation event with multiple partner chromosomes, whose oncogenic impact has not been investigated so far due to the assumption of a possible role as a passenger mutation. Here, we describe a t(4;13)(q21;q14) translocation occurring in a B-CLL case from the diagnosis to spontaneous regression. FISH and SNP-array analyses revealed a heterozygous deletion at 4q21, leading to the loss of the Rho GTPase Activating Protein 24 (ARHGAP24) tumor suppressor gene, down-regulated in the patient RNA, in addition to the homozygous deletion at 13q14 involving DLEU2/miR15a/miR16-1 genes. Interestingly, targeted Next Generation Sequencing analysis of 54 genes related to B-CLL indicated no additional somatic mutation in the patient, underlining the relevance of this t(4;13)(q21;q14) aberration in the leukemogenic process. In all tested RNA samples, RT-qPCR experiments assessed the downregulation of the PCNA, MKI67, and TOP2A proliferation factor genes, and the BCL2 anti-apoptotic gene as well as the up-regulation of TP53 and CDKN1A tumor suppressors, indicating a low proliferation potential of the cells harboring the aberration. In addition, RNA-seq analyses identified four chimeric transcripts (ATG4B::PTMA, OAZ1::PTMA, ZFP36::PTMA, and PIM3::BRD1), two of which (ATG4B::PTMA and ZFP36::PTMA) failed to be detected at the remission, suggesting a possible transcriptional remodeling during the disease course. Overall, our results indicate a favorable prognostic impact of the described chromosomal aberration, as it arises a permissive molecular landscape to the spontaneous B-CLL regression in the patient, highlighting ARHGAP24 as a potentially relevant concurrent alteration to the 13q14 deletion in delineating B-CLL disease evolution.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Deleção de Sequência , Homozigoto , Translocação Genética , Aberrações Cromossômicas , RNA , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 13/metabolismo , Proteínas Ativadoras de GTPase/genética , MicroRNAs/genética
7.
Br J Cancer ; 128(2): 331-341, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385556

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with few therapeutic options available. Despite immunotherapy has revolutionised cancer treatment, the results obtained in PDAC are still disappointing. Emerging evidence suggests that chemokines/CXCRs-axis plays a pivotal role in immune tumour microenvironment modulation, which may influence immunotherapy responsiveness. Here, we evaluated the effectiveness of CXCR1/2 inhibitor ladarixin, alone or in combination with anti-PD-1, against immunosuppression in PDAC. METHODS: A set of preclinical models was obtained by engrafting mouse PDAC-derived cells into syngeneic immune-competent mice, as well as by orthotopically transplanting patient-derived PDAC tumour into human immune-system-reconstituted (HIR) mice (HuCD34-NSG-mice). Tumour-bearing mice were randomly assigned to receive vehicles, ladarixin, anti-PD-1 or drugs combination. RESULTS: CXCR1/2 inhibition by ladarixin reverted in vitro tumour-mediated M2 macrophages polarisation and migration. Ladarixin as single agent reduced tumour burden in cancer-derived graft (CDG) models with high-immunogenic potential and increased the efficacy of ICI in non-immunogenic CDG-resistant models. In a HIR mouse model bearing the immunogenic subtype of human PDAC, ladarixin showed high efficacy increasing the antitumor effect of anti-PD-1. CONCLUSION: Ladarixin in combination with anti-PD-1 might represent an extremely effective approach for the treatment of immunotherapy refractory PDAC, allowing pro-tumoral to immune-permissive microenvironment conversion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Carga Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Plants (Basel) ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501354

RESUMO

As they represent actual or potential risks to human and environmental safety and health, abandoned mines are a major global problem. The heavy metal-polluted tailings dump of Barraxiutta (Domusnovas, southwestern Sardinia, Italy) is home to a metallicolous population of Epipactis tremolsii (Orchidaceae). A reclamation of the abandoned mine area seems to be approaching, and such an intervention may pose a serious risk for the maintenance of the unique orchid population colonizing the mine wastes. In the present work, the seed packet technique was implemented for the first time to observe orchid seed development in mine wastes. This approach allowed us to explore different seed-based conservation options for the metallicolous orchid population and to gain a deeper grasp of population dynamics and ecology. Four different sowing treatments were set up in the tailing dump and in a near unpolluted site (control site). The field phase of the experiment lasted for 10 months, a period in which the experimental seed bank preservation and incipient seed development were observed and statistically approached. Our findings observed no significant seed loss happening during the experiment, demonstrating the suitability of the seed packet technique to also explore seed bank conservation and development in extreme environmental conditions (i.e., polluted mine wastes). This field method will be a useful tool to further explore the more effective translocation and quasi in situ conservation alternatives for the E. tremolsii metallicolous population. Incipient and site-specific seed development (non-mycorrhizal stage) was observed during the experiment. A plant-soil fungus interaction at the seed level was also observed, the nature of which remains to be ascertained in further studies providing a longer duration for the field phases.

9.
Cells ; 11(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36230995

RESUMO

Immunogenic cell death (ICD) is a regulated form of cell death that induces the activation of both innate and adaptive immune responses through the release of damage-associated molecular patterns (DAMPs) and their subsequent recognition by pattern-recognition receptors (PRRs), generating specific CD8+ T lymphocytes. Thus, ICD inducers (such as certain chemotherapeutic agents, targeted therapies, radiation, and oncolytic viruses) could become a potential cancer treatment by providing antitumour immunity and cancer vaccination. Moreover, their combination with immunotherapy, especially with immune checkpoint inhibitors, could overcome the immunosuppressive tumour microenvironment that characterises certain cancers, including gastrointestinal cancers. This review will provide insights into the role of ICD induction in colorectal, gastric, pancreatic, and hepatocellular carcinomas. Specifically, we will discuss the main mechanisms involved in ICD, their potential application in gastrointestinal cancer treatment, and the latest clinical trial updates.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Vírus Oncolíticos , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Neoplasias Gastrointestinais/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Morte Celular Imunogênica , Imunoterapia , Microambiente Tumoral
10.
Anal Chem ; 94(29): 10435-10442, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35848818

RESUMO

The need to find a rapid and worthwhile technique for the in situ detection of the content of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in Cannabis sativa L. is an ever-increasing problem in the forensic field. Among all the techniques for the detection of cannabinoids, Raman spectroscopy can be identified as the most cost-effective, fast, noninvasive, and nondestructive. In this study, 42 different samples were analyzed using Raman spectroscopy with 1064 nm excitation wavelength. The use of an IR wavelength laser showed the possibility to clearly identify THC and CBD in fresh samples, without any further processing, knocking out the contribution of the fluorescence generated by visible and near-IR sources. The results allow assigning all the Raman features in THC- and CBD-rich natural samples. The multivariate analysis underlines the high reproducibility of the spectra and the possibility to distinguish immediately the Raman spectra of the two cannabinoid species. Furthermore, the ratio between the Raman bands at 1295/1440 and 1623/1663 cm-1 is identified as an immediate test parameter to evaluate the THC content in the samples.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Dronabinol/análise , Reprodutibilidade dos Testes , Análise Espectral Raman
11.
Front Immunol ; 13: 876291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711414

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases and shows a high mortality rate among all solid tumors. PDAC is often associated with poor prognosis, due to the late diagnosis that leads to metastasis development, and limited efficacy of available treatments. The tumor microenvironment (TME) represents a reliable source of novel targets for therapy, and even if many of the biological interactions among stromal, immune, and cancer cells that populate the TME have been studied, much more needs to be clarified. The great limitation in the efficacy of current standard chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding cancer cells and the immunological evolution from a tumor-suppressor to an immunosuppressive environment. Nevertheless, combinatorial therapies may prove more effective at overcoming resistance mechanisms and achieving tumor cell killing. To achieve this result, a deeper understanding of the pathological mechanisms driving tumor progression and immune escape is required in order to design rationale-based therapeutic strategies. This review aims to summarize the present knowledge about cellular interactions in the TME, with much attention on immunosuppressive functioning and a specific focus on extracellular matrix (ECM) contribution.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Comunicação Celular , Humanos , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Clin Nucl Med ; 47(11): e692-e695, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695716

RESUMO

ABSTRACT: A 76-year-old woman affected by pancreatic neuroendocrine tumor previously subjected to surgery with progressive liver disease and a concomitant mild symptomatic meningioma of the left pontocerebellar angle underwent 4 cycles of peptide receptor radionuclide therapy with 177 Lu-DOTATATE. A prophylactic therapy with corticosteroids was carried out before each treatment cycle, and the neurosurgery unit was alerted in case of cerebral edema and related neurologic symptoms. A 68 Ga-DOTATOC PET/CT scan performed after the completion of the 4 cycles' treatment documented a hepatic partial response and a substantial stability of the brain mass. No neurological complications occurred during treatment and follow-up.


Assuntos
Neoplasias Intestinais , Neoplasias Meníngeas , Meningioma , Tumores Neuroendócrinos , Compostos Organometálicos , Neoplasias Pancreáticas , Idoso , Feminino , Humanos , Lutécio , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/radioterapia , Octreotida/uso terapêutico , Compostos Organometálicos/uso terapêutico , Neoplasias Pancreáticas/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Radioisótopos , Cintilografia , Compostos Radiofarmacêuticos , Receptores de Peptídeos , Neoplasias Gástricas
13.
Plants (Basel) ; 11(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35336708

RESUMO

Orchidaceae is a flowering plant family worldwide distributed known for producing volatile organic compounds (VOCs) which can act as olfactory signals for pollinators. Despite the importance of VOCs in the different reproductive strategies, in the literature there are only a few publications on the characterization of orchids' volatile profiles. In this study, the essential oils from fresh inflorescences of sympatric orchids Anacamptis morio, Himantoglossum robertianum, Ophrys sphegodes and Orchis purpurea, naturally growing in Piedmont (Italy) were isolated by steam distillation and characterized by GC/FID and GC/MS. A number of compounds were identified, with a peculiar distribution in the species: alcohols (range 16.93-50.60%), from which p-cresol (range 12.75-38.10%) was the most representative compound; saturated hydrocarbons (range 5.81-59.29%), represented by pentacosane (range 2.22-40.17%) and tricosane (range 0.78-27.48%); long-chain monounsaturated hydrocarbons (range 0.29-5.20%) represented by 9-pentacosene, 11-tricosene, and 1-heneicosene. The structure of positional isomers in linear alkenes was elucidated by derivatization with dimethyl disulfide and MS fragmentation patterns. Coumarin (68.84%) was the dominant compound in O. purpurea and was detected in lower concentrations (range 0.21-0.26%) in the other taxa. These volatile compounds may represent a particular feature of these plant species and play an essential role in pollinator interaction.

14.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34479922

RESUMO

BACKGROUND: Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the adaptive immune response. Phase I and II trials with intratumoral IMO-2125 demonstrated its safety and antitumoral activity. METHODS: We generated an array of preclinical models by orthotopically engrafting PDAC-derived cell lines in syngeneic mice and categorized them as high, low and no immunogenic potential, based on the ability of tumor to evoke T lymphocyte or NK cell response. To test the antitumor efficacy of IMO-2125 on locally treated and distant sites, we engrafted cancer cells on both flanks of syngeneic mice and treated them with intratumoral IMO-2125 or vehicle, alone or in combination with anti-PD1 ICI. Tumor tissues and systemic immunity were analyzed by transcriptomic, cytofluorimetric and immunohistochemistry analysis. RESULTS: We demonstrated that intratumoral IMO-2125 as single agent triggers immune system response to kill local and distant tumors in a selected high immunogenic subtype affecting tumor growth and mice survival. Remarkably, intratumoral IMO-2125 in combination with systemic anti-PD1 causes a potent antitumor effect on primary injected and distant sites also in pancreatic cancer models with low immunogenic potential, preceded by a transition toward an immunopermissive microenvironment, with increase in tumor-infiltrating dendritic and T cells in tumor and lymph nodes. CONCLUSION: We demonstrated a potent antitumor activity of IMO-2125 and anti-PD1 combination in immunotherapy-resistant PDAC models through the modulation of immune microenvironment, providing the rationale to translate this strategy into a clinical setting.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Injeções Intralesionais , Camundongos , Microambiente Tumoral
15.
Gene ; 779: 145497, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600954

RESUMO

NGS technologies and bioinformatics tools allow the rapid identification of chimeric transcripts in cancer. More than 40,000 fusions are so far reported in the literature; however, for most of them, the role in oncogenesis is still not fully understood. This is the case for fusions involving the long non-coding RNA (lncRNA) Plasmacytoma variant translocation 1 (PVT1) (8q24.21). This lncRNA displays oncogenic functions in several cancer types interacting with microRNAs and proteins, but the role of PVT1 fusion transcripts is more obscure. These chimeras have been identified in both hematological malignancies and solid tumors, mainly arising from rearrangements and/or amplification of the 8q24 chromosomal region. In this review, we detail the full spectrum of PVT1 fusions in cancer, summarizing current knowledge about their genesis, function, and role as biomarkers.


Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Genes myc , Neoplasias Hematológicas/genética , Humanos , Neoplasias/patologia
16.
Front Med (Lausanne) ; 8: 793144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004765

RESUMO

For many years, cell lines and animal models have been essential to improve our understanding of the basis of cell metabolism, signaling, and genetics. They also provided an essential boost to cancer drug discovery. Nevertheless, these model systems failed to reproduce the tumor heterogeneity and the complex biological interactions between cancer cells and human hosts, making a high priority search for alternative methods that are able to export results from model systems to humans, which has become a major bottleneck in the drug development. The emergent human in vitro 3D cell culture technologies have attracted widespread attention because they seem to have the potential to overcome these limitations. Organoids are unique 3D culture models with the ability to self-organize in contained structures. Their versatility has offered an exceptional window of opportunity to approach human cancers. Pancreatic cancers (PCs) patient-derived-organoids (PDOs) preserve histological, genomic, and molecular features of neoplasms they originate from and therefore retain their heterogeneity. Patient-derived organoids can be established with a high success rate from minimal tissue core specimens acquired with endoscopic-ultrasound-guided techniques and assembled into platforms, representing tens to hundreds of cancers each conserving specific features, expanding the types of patient samples that can be propagated and analyzed in the laboratory. Because of their nature, PDO platforms are multipurpose systems that can be easily adapted in co-culture settings to perform a wide spectrum of studies, ranging from drug discovery to immune response evaluation to tumor-stroma interaction. This possibility to increase the complexity of organoids creating a hybrid culture with non-epithelial cells increases the interest in organoid-based platforms giving a pragmatic way to deeply study biological interactions in vitro. In this view, implementing organoid models in co-clinical trials to compare drug responses may represent the next step toward even more personalized medicine. In the present review, we discuss how PDO platforms are shaping modern-day oncology aiding to unravel the most complex aspects of PC.

17.
Hum Cell ; 34(1): 238-245, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32856169

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors, accounting for around 5% of all soft tissue sarcomas. A better understanding of the pathogenesis of these tumors and the development of effective treatments are needed. In this context, established tumor cell lines can be very informative, as they may be used for in-depth molecular analyses and improvement of treatment strategies. Here, we present the genomic and transcriptomic profiling analysis of a MPNST cell line (BL1391) that was spontaneously established in our laboratory from a primary tumor that had not been exposed to genotoxic treatment. This cell line shows peculiar genetic features, such as a large marker chromosome composed of high-copy number amplifications of regions from chromosomes 1 and 11 with an embedded neocentromere. Moreover, the transcriptome profiling revealed the presence of several fusion transcripts involving the CACHD1, TNMA4, MDM4, and YAP1 genes, all of which map to the amplified regions of the marker. BL1391 could be a useful tool to study genomic amplifications and neocentromere seeding in MPNSTs and to develop new therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , Proteínas de Membrana/genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias do Sistema Nervoso Periférico/genética , Neoplasias do Sistema Nervoso Periférico/patologia , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Amplificação de Genes/genética , Perfilação da Expressão Gênica , Humanos , Proteínas de Sinalização YAP
18.
Front Plant Sci ; 11: 563971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133114

RESUMO

Seed's maturity and integrity are essential requirements for germination, and they rely on nutrients availability and a correct phytohormones' balance. These aspects are prerequisites for prompt germination at the end of the dormancy period and strictly depend on chloroplast metabolism and photosynthesis. In the present work, capsules of Nicotiana tabacum were grown in dark during the whole post-anthesis period. Among others, photosynthetic rates, dormancy, and phytohormones levels in seeds were found to be significantly different with respect to controls. In particular, etiolated capsules had expectedly reduced photosynthetic rates and, when compared to controls, their seeds had an increased mass and volume, an alteration in hormones level, and a consequently reduced dormancy. The present findings show how, during fruit development, the presence of light and the related fruit's photosynthetic activity play an indirect but essential role for reaching seeds maturity and dormancy. Results highlight how unripe fruits are versatile organs that, depending on the environmental conditions, may facultatively behave as sink or source/sink with associated variation in seed's reserves and phytohormone levels.

19.
Plants (Basel) ; 9(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238580

RESUMO

Analysis of the seed morphology is a widely used approach in ecological and taxonomic studies. In this context, intraspecific variability with respect to seed morphology (size, weight, and density) was assessed in two close Epipactis tremolsii Pau. populations sharing the same ecological conditions, except for the soil pollution distinguishing one of them. Larger and heavier seeds were found in plants growing on the heavy metal polluted site, while no differences in seed density were detected between seeds produced by plants growing on the contaminated and the control site. Moreover, seed coats and embryos varying together in their dimensions were described in the control population, while coats varying in their size independently from embryos were described in plants growing on the polluted site. Seeds from the two studied populations significantly differed in several parameters suggesting that intraspecific seed variability occurred in the case study.

20.
Cell Signal ; 75: 109747, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860952

RESUMO

Circular RNAs (circRNAs) are generated from 'back-splicing' events. Their circular structure makes them stable in cells and body fluids. These entities are involved in several human diseases including cancer, as they affect the expression of genes promoting proliferation, invasion, apoptosis, and angiogenesis. Moreover, they are secreted in extracellular vesicles, such as exosomes, having a potential role as messengers in cell-to-cell communications. CircRNAs are also generated by the back-splicing of linear fusion transcripts derived from genomic rearrangements, giving rise to fusion circRNAs (f-circRNAs). Here we discuss the most relevant results achieved by studying the role of circRNAs in cancer onset and progression, particularly focusing on f-circRNAs in hematological and solid tumors. Moreover, we report recent advances in the application of circRNAs as novel "liquid biopsy" biomarkers for early and non-invasive diagnosis of tumors, and as therapeutic targets in human cancer. Their use as engineered molecules sponging oncogenic miRNAs or stably expressing proteins/drugs is also discussed. All these achievements suggest the crucial importance of circRNAs and f-circRNAs in the future setup of personalized therapies in molecular medicine.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , RNA Circular/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...